home *** CD-ROM | disk | FTP | other *** search
/ HPAVC / HPAVC CD-ROM.iso / pc / FAQSYS18.ZIP / FAQS.DAT / RSACRYPT.20 / text0000.txt < prev    next >
Encoding:
Text File  |  1995-12-12  |  51.4 KB  |  1,042 lines

  1. Archive-name: cryptography-faq/rsa/part1
  2. Last-modified: 93/09/20
  3. Version: 2.0
  4. Distribution-agent: tmp@netcom.com
  5.  
  6.  
  7. (This document has been brought to you in part by CRAM.  See the
  8. bottom for more information, including instructions on how to
  9. obtain updates.)
  10.  
  11. ===
  12.  
  13.  
  14.                           Answers To
  15.                  FREQUENTLY ASKED QUESTIONS
  16.                  About Today's Cryptography
  17.  
  18.  
  19.  
  20.                           Paul Fahn
  21.                       RSA Laboratories
  22.                      100 Marine Parkway
  23.                    Redwood City, CA  94065
  24.  
  25.  
  26.  
  27.    Copyright (c) 1993 RSA Laboratories, a division of RSA Data Security,
  28.       Inc. All rights reserved.
  29.  
  30.    Version 2.0, draft 2f
  31.    Last update: September 20, 1993
  32.  
  33.  
  34.  
  35. ------------------------------------------------------------------------
  36.                          Table of Contents
  37.  
  38. [ part 1 ]
  39.  
  40. 1 General 
  41.        1.1  What is encryption? 
  42.        1.2  What is authentication? What is a digital signature? 
  43.        1.3  What is public-key cryptography? 
  44.        1.4  What are the advantages and disadvantages of public-key 
  45.             cryptography over secret-key cryptography? 
  46.        1.5  Is cryptography patentable in the U.S.? 
  47.        1.6  Is cryptography exportable from the U.S.? 
  48.  
  49. 2 RSA 
  50.        2.1  What is RSA? 
  51.        2.2  Why use RSA rather than DES? 
  52.        2.3  How fast is RSA? 
  53.        2.4  How much extra message length is caused by using RSA? 
  54.        2.5  What would it take to break RSA? 
  55.        2.6  Are strong primes necessary in RSA? 
  56.        2.7  How large a modulus (key) should be used in RSA? 
  57.        2.8  How large should the primes be? 
  58.        2.9  How does one find random numbers for keys? 
  59.        2.10  What if users of RSA run out of distinct primes? 
  60.        2.11  How do you know if a number is prime? 
  61.        2.12  How is RSA used for encryption in practice? 
  62.        2.13  How is RSA used for authentication in practice? 
  63.        2.14  Does RSA help detect altered documents and transmission errors? 
  64.        2.15  What are alternatives to RSA? 
  65.        2.16  Is RSA currently in use today? 
  66.        2.17  Is RSA an official standard today? 
  67.        2.18  Is RSA a de facto standard? Why is a de facto standard important? 
  68.        2.19  Is RSA patented? 
  69.        2.20  Can RSA be exported from the U.S.? 
  70.  
  71. [ part 2 ]
  72.  
  73. 3 Key Management 
  74.        3.1  What key management issues are involved in public-key 
  75.             cryptography? 
  76.        3.2  Who needs a key? 
  77.        3.3  How does one get a key pair? 
  78.        3.4  Should a public key or private key be shared among users? 
  79.        3.5  What are certificates? 
  80.        3.6  How are certificates used? 
  81.        3.7  Who issues certificates and how? 
  82.        3.8  What is a CSU, or, How do certifying authorities store their 
  83.             private keys? 
  84.        3.9  Are certifying authorities susceptible to attack? 
  85.        3.10  What if the certifying authority's key is lost or compromised? 
  86.        3.11  What are Certificate Revocation Lists (CRLs)? 
  87.        3.12  What happens when a key expires? 
  88.        3.13  What happens if I lose my private key? 
  89.        3.14  What happens if my private key is compromised? 
  90.        3.15  How should I store my private key? 
  91.        3.16  How do I find someone else's public key? 
  92.        3.17  How can signatures remain valid beyond the expiration dates of 
  93.              their keys, or, How do you verify a 20-year-old signature? 
  94.        3.18  What is a digital time-stamping service? 
  95.  
  96. 4 Factoring and Discrete Log 
  97.        4.1  What is a one-way function? 
  98.        4.2  What is the significance of one-way functions for cryptography? 
  99.        4.3  What is the factoring problem? 
  100.        4.4  What is the significance of factoring in cryptography? 
  101.        4.5  Has factoring been getting easier? 
  102.        4.6  What are the best factoring methods in use today? 
  103.        4.7  What are the prospects for theoretical factoring breakthroughs? 
  104.        4.8  What is the RSA Factoring Challenge? 
  105.        4.9  What is the discrete log problem? 
  106.        4.10  Which is easier, factoring or discrete log? 
  107.  
  108. 5 DES 
  109.        5.1  What is DES? 
  110.        5.2  Has DES been broken? 
  111.        5.3  How does one use DES securely? 
  112.        5.4  Can DES be exported from the U.S.? 
  113.        5.5  What are the alternatives to DES? 
  114.        5.6  Is DES a group? 
  115.  
  116. [part 3]
  117.  
  118. 6 Capstone, Clipper, and DSS 
  119.        6.1  What is Capstone? 
  120.        6.2  What is Clipper? 
  121.        6.3  How does the Clipper chip work? 
  122.        6.4  Who are the escrow agencies? 
  123.        6.5  What is Skipjack? 
  124.        6.6  Why is Clipper controversial? 
  125.        6.7  What is the current status of Clipper? 
  126.        6.8  What is DSS? 
  127.        6.9  Is DSS secure? 
  128.        6.10  Is use of DSS covered by any patents? 
  129.        6.11  What is the current status of DSS? 
  130.  
  131. 7 NIST and NSA 
  132.        7.1  What is NIST? 
  133.        7.2  What role does NIST play in cryptography? 
  134.        7.3  What is the NSA? 
  135.        7.4  What role does the NSA play in commercial cryptography? 
  136.  
  137. 8 Miscellaneous 
  138.        8.1  What is the legal status of documents signed with digital 
  139.             signatures? 
  140.        8.2  What is a hash function? What is a message digest? 
  141.        8.3  What are MD2, MD4 and MD5? 
  142.        8.4  What is SHS? 
  143.        8.5  What is Kerberos? 
  144.        8.6  What are RC2 and RC4? 
  145.        8.7  What is PEM? 
  146.        8.8  What is RIPEM? 
  147.        8.9  What is PKCS? 
  148.        8.10  What is RSAREF? 
  149.  
  150. --------------------------------------------------------------------
  151.  
  152.  
  153. 1 General
  154.  
  155. 1.1 What is encryption?
  156.  
  157. Encryption is the transformation of data into a form unreadable by anyone
  158. without a secret decryption key. Its purpose is to ensure privacy by
  159. keeping the information hidden from anyone for whom it is not intended, 
  160. even those who can see the encrypted data. For example, one may wish to 
  161. encrypt files on a hard disk to prevent an intruder from reading them. 
  162.  
  163. In a multi-user setting, encryption allows secure communication over an
  164. insecure channel. The general scenario is as follows: Alice wishes to 
  165. send a message to Bob so that no one else besides Bob can read it. Alice 
  166. encrypts the message, which is called the plaintext, with an encryption 
  167. key; the encrypted message, called the ciphertext, is sent to Bob. Bob 
  168. decrypts the ciphertext with the decryption key and reads the message. An 
  169. attacker, Charlie, may either try to obtain the secret key or to recover 
  170. the plaintext without using the secret key. In a secure cryptosystem, the 
  171. plaintext cannot be recovered from the ciphertext except by using the 
  172. decryption key. In a symmetric cryptosystem, a single key serves as both 
  173. the encryption and decryption keys.
  174.  
  175. Cryptography has been around for millennia; see Kahn [37] for a 
  176. good history of cryptography; see Rivest [69] and Brassard
  177. [10] for an introduction to modern cryptography.
  178.  
  179.  
  180. 1.2 What is authentication? What is a digital signature?
  181.  
  182. Authentication in a digital setting is a process whereby the receiver of a 
  183. digital message can be confident of the identity of the sender and/or the
  184. integrity of the message. Authentication protocols can be based on either 
  185. conventional secret-key cryptosystems like DES or on public-key systems 
  186. like RSA; authentication in public-key systems uses digital signatures.
  187.  
  188. In this document, authentication will generally refer to the use of digital
  189. signatures, which play a function for digital documents similar to that 
  190. played by handwritten signatures for printed documents: the signature is an 
  191. unforgeable piece of data asserting that a named person wrote or otherwise 
  192. agreed to the document to which the signature is attached. The recipient, as 
  193. well as a third party, can verify both that the document did indeed originate 
  194. >from the person whose signature is attached and that the document has not 
  195. been altered since it was signed. A secure digital signature system thus 
  196. consists of two parts: a method of signing a document such that forgery is 
  197. infeasible, and a method of verifying that a signature was actually generated 
  198. by whomever it represents. Furthermore, secure digital signatures cannot be 
  199. repudiated; i.e., the signer of a document cannot later disown it by claiming 
  200. it was forged.
  201.  
  202. Unlike encryption, digital signatures are a recent development, the
  203. need for which has arisen with the proliferation of digital communications.
  204.  
  205.  
  206. 1.3 What is public-key cryptography? 
  207.  
  208. Traditional cryptography is based on the sender and receiver of a message 
  209. knowing and using the same secret key: the sender uses the secret key to 
  210. encrypt the message, and the receiver uses the same secret key to decrypt 
  211. the message. This method is known as secret-key cryptography. The main 
  212. problem is getting the sender and receiver to agree on the secret key 
  213. without anyone else finding out. If they are in separate physical locations, 
  214. they must trust a courier, or a phone system, or some other transmission 
  215. system to not disclose the secret key being communicated. Anyone who 
  216. overhears or intercepts the key in transit can later read all messages 
  217. encrypted using that key. The generation, transmission and storage of keys 
  218. is called key management; all cryptosystems must deal with key management 
  219. issues. Secret-key cryptography often has difficulty providing secure key 
  220. management.
  221.  
  222. Public-key cryptography was invented in 1976 by Whitfield Diffie and
  223. Martin Hellman [29] in order to solve the key management problem. In the 
  224. new system, each person gets a pair of keys, called the public key and 
  225. the private key. Each person's public key is published while the private 
  226. key is kept secret. The need for sender and receiver to share secret 
  227. information is eliminated: all communications involve only public keys, 
  228. and no private key is ever transmitted or shared. No longer is it necessary 
  229. to trust some communications channel to be secure against eavesdropping 
  230. or betrayal. Anyone can send a confidential message just using public 
  231. information, but it can only be decrypted with a private key that is in 
  232. the sole possession of the intended recipient. Furthermore, public-key 
  233. cryptography can be used for authentication (digital signatures) as well as 
  234. for privacy (encryption). 
  235.  
  236. Here's how it works for encryption: when Alice wishes to send a message to 
  237. Bob, she looks up Bob's public key in a directory, uses it to encrypt the 
  238. message and sends it off. Bob then uses his private key to decrypt the 
  239. message and read it. No one listening in can decrypt the message. Anyone 
  240. can send an encrypted message to Bob but only Bob can read it. Clearly, one 
  241. requirement is that no one can figure out the private key from the 
  242. corresponding public key.
  243.  
  244. Here's how it works for authentication: Alice, to sign a message, does
  245. a computation involving both her private key and the message itself; the
  246. output is called the digital signature and is attached to the message,
  247. which is then sent. Bob, to verify the signature, does some computation 
  248. involving the message, the purported signature, and Alice's public key. If 
  249. the results properly hold in a simple mathematical relation, the signature 
  250. is verified as genuine; otherwise, the signature may be fraudulent or the 
  251. message altered, and they are discarded.
  252.  
  253. A good history of public-key cryptography, by one of its inventors, is 
  254. given by Diffie [27].
  255.  
  256.  
  257. 1.4 What are the advantages and disadvantages of public-key cryptography 
  258.     over secret-key cryptography?}
  259.  
  260. The primary advantage of public-key cryptography is increased security: 
  261. the private keys do not ever need to be transmitted or revealed to anyone. 
  262. In a secret-key system, by contrast, there is always a chance that an 
  263. enemy could discover the secret key while it is being transmitted.
  264.  
  265. Another major advantage of public-key systems is that they can provide 
  266. a method for digital signatures. Authentication via secret-key systems
  267. requires the sharing of some secret and sometimes requires trust of a 
  268. third party as well. A sender can then repudiate a previously signed message 
  269. by claiming that the shared secret was somehow compromised by one of the
  270. parties sharing the secret. For example, the Kerberos secret-key 
  271. authentication system [79] involves a central database that keeps copies 
  272. of the secret keys of all users; a Kerberos-authenticated message would 
  273. most likely not be held legally binding, since an attack on the database 
  274. would allow widespread forgery. Public-key authentication, on the other 
  275. hand, prevents this type of repudiation; each user has sole responsibility 
  276. for protecting his or her private key. This property of public-key 
  277. authentication is often called non-repudiation. 
  278.  
  279. Furthermore, digitally signed messages can be proved authentic to a third 
  280. party, such as a judge, thus allowing such messages to be legally binding. 
  281. Secret-key authentication systems such as Kerberos were designed to 
  282. authenticate access to network resources, rather than to authenticate 
  283. documents, a task which is better achieved via digital signatures.
  284.  
  285. A disadvantage of using public-key cryptography for encryption is speed: 
  286. there are popular secret-key encryption methods which are significantly 
  287. faster than any currently available public-key encryption method. But 
  288. public-key cryptography can share the burden with secret-key cryptography 
  289. to get the best of both worlds. 
  290.  
  291. For encryption, the best solution is to combine public- and secret-key 
  292. systems in order to get both the security advantages of public-key systems 
  293. and the speed advantages of secret-key systems. The public-key system can 
  294. be used to encrypt a secret key which is then used to encrypt the bulk 
  295. of a file or message. This is explained in more detail in Question 2.12
  296. in the case of RSA. Public-key cryptography is not meant to replace 
  297. secret-key cryptography, but rather to supplement it, to make it more 
  298. secure. The first use of public-key techniques was for secure key exchange 
  299. in an otherwise secret-key system [29]; this is still one of its primary 
  300. functions.
  301.  
  302. Secret-key cryptography remains extremely important and is the subject of
  303. much ongoing study and research. Some secret-key encryption systems are 
  304. discussed in Questions 5.1 and 5.5.
  305.  
  306.  
  307. 1.5 Is cryptography patentable in the U.S.?
  308.  
  309. Cryptographic systems are patentable. Many secret-key cryptosystems 
  310. have been patented, including DES (see Question 5.1). The basic ideas 
  311. of public-key cryptography are contained in U.S. Patent 4,200,770, by M.
  312. Hellman, W. Diffie, and R. Merkle, issued 4/29/80 and in U.S. Patent 
  313. 4,218,582, by M. Hellman and R. Merkle, issued 8/19/80; similar patents have 
  314. been issued throughout the world. The exclusive licensing rights to both 
  315. patents are held by Public Key Partners (PKP), of Sunnyvale, California, 
  316. which also holds the rights to the RSA patent (see Question 2.19). 
  317. Usually all of these public-key patents are licensed together. 
  318.  
  319. All legal challenges to public-key patents have been settled before
  320. judgment. In a recent case, for example, PKP brought suit against the TRW 
  321. Corporation which was using public-key cryptography (the ElGamal system) 
  322. without a license; TRW claimed it did not need to license. In June 1992 a 
  323. settlement was reached in which TRW agreed to license to the patents.
  324.  
  325. Some patent applications for cryptosystems have been blocked by intervention 
  326. by the NSA (see Question 7.3) or other intelligence or defense agencies, 
  327. under the authority of the Invention Secrecy Act of 1940 and the National 
  328. Security Act of 1947; see Landau [46] for some recent cases related to 
  329. cryptography.
  330.  
  331.  
  332. 1.6 Is cryptography exportable from the U.S.?
  333.  
  334. All cryptographic products need export licenses from the State Department, 
  335. acting under authority of the International Traffic in Arms Regulation 
  336. (ITAR), which defines cryptographic devices, including software, as 
  337. munitions. The U.S. government has historically been reluctant to grant 
  338. export licenses for encryption products stronger than some basic level 
  339. (not publicly stated). 
  340.  
  341. Under current regulations, a vendor seeking to export a product using 
  342. cryptography first submits an request to the State Department's Defense
  343. Trade Control office. Export jurisdiction may then be passed to the
  344. Department of Commerce, whose export procedures are generally simple and
  345. efficient. If jurisdiction remains with the State Department, further
  346. review, perhaps lengthy, is required before export is either approved or
  347. denied; the National Security Agency (NSA, see Question 7.3) may become 
  348. directly involved at this point. The details of the export approval 
  349. process change frequently.
  350.  
  351. The NSA has de facto control over export of cryptographic products. The State 
  352. Department will not grant a license without NSA approval and routinely grants 
  353. licenses whenever NSA does approve. Therefore, the policy decisions over 
  354. exporting cryptography ultimately rest with the NSA.
  355.  
  356. It is the stated policy of the NSA not to restrict export of cryptography
  357. for authentication; it is only concerned with the use of cryptography for 
  358. privacy. A vendor seeking to export a product for authentication only will 
  359. be granted an export license as long as it can demonstrate that the product 
  360. cannot be easily modified for encryption; this is true even for very strong 
  361. systems, such as RSA with large key sizes. Furthermore, the bureaucratic 
  362. procedures are simpler for authentication products than for privacy products. 
  363. An authentication product needs NSA and State Dept. approval only once, 
  364. whereas an encryption product may need approval for every sale or every 
  365. product revision.
  366.  
  367. Export policy is currently a matter of great controversy, as many software
  368. and hardware vendors consider current export regulations overly restrictive 
  369. and burdensome. The Software Publishers Association (SPA), a software 
  370. industry group, has recently been negotiating with the government in order 
  371. to get export license restrictions eased; one agreement was reached that 
  372. allows simplified procedures for export of two bulk encryption ciphers, RC2 
  373. and RC4 (see Question 8.6), when the key size is limited. Also, export 
  374. policy is less restrictive for foreign subsidiaries and overseas offices of 
  375. U.S. companies.
  376.  
  377. In March 1992, the Computer Security and Privacy Advisory Board voted 
  378. unanimously to recommend a national review of cryptography policy, 
  379. including export policy. The Board is an official advisory board to NIST 
  380. (see Question 7.1) whose members are drawn from both the government 
  381. and the private sector. The Board stated that a public debate is the only 
  382. way to reach a consensus policy to best satisfy competing interests: 
  383. national security and law enforcement agencies like restrictions on 
  384. cryptography, especially for export, whereas other government agencies and 
  385. private industry want greater freedom for using and exporting cryptography. 
  386. Export policy has traditionally been decided solely by agencies concerned 
  387. with national security, without much input from those who wish to encourage 
  388. commerce in cryptography. U.S. export policy may undergo significant change 
  389. in the next few years.
  390.  
  391.  
  392. 2 RSA
  393.  
  394. 2.1 What is RSA?
  395.  
  396. RSA is a public-key cryptosystem for both encryption and authentication;
  397. it was invented in 1977 by Ron Rivest, Adi Shamir, and Leonard Adleman
  398. [74]. It works as follows: take two large primes, p and q, and find their 
  399. product n = pq; n is called the modulus. Choose a number, e, less than n 
  400. and relatively prime to (p-1)(q-1), and find its inverse, d, mod (p-1)(q-1),
  401. which means that ed = 1 mod (p-1)(q-1); e and d are called the public and 
  402. private exponents, respectively. The public key is the pair (n,e); the 
  403. private key is d. The factors p and q must be kept secret, or destroyed. 
  404.  
  405. It is difficult (presumably) to obtain the private key d from the public 
  406. key (n,e). If one could factor n into p and q, however, then one could 
  407. obtain the private key d. Thus the entire security of RSA is predicated 
  408. on the assumption that factoring is difficult; an easy factoring method 
  409. would ``break'' RSA (see Questions 2.5 and 4.4).
  410.  
  411. Here is how RSA can be used for privacy and authentication (in practice, 
  412. actual use is slightly different; see Questions 2.12 and 2.13):
  413.  
  414. RSA privacy (encryption): suppose Alice wants to send a private message, 
  415. m, to Bob. Alice creates the ciphertext c by exponentiating: c = m^e 
  416. mod n, where e and n are Bob's public key. To decrypt, Bob also 
  417. exponentiates: m = c^d mod n, and recovers the original message m;
  418. the relationship between e and d ensures that Bob correctly recovers m.
  419. Since only Bob knows d, only Bob can decrypt. 
  420.  
  421. RSA authentication: suppose Alice wants to send a signed document m to Bob. 
  422. Alice creates a digital signature s by exponentiating: s = m^d mod n, 
  423. where d and n belong to Alice's key pair. She sends s and m to Bob. 
  424. To verify the signature, Bob exponentiates and checks that the message m 
  425. is recovered: m = s^e mod n, where e and n belong to Alice's public 
  426. key.
  427.  
  428. Thus encryption and authentication take place without any sharing of 
  429. private keys: each person uses only other people's public keys and his or 
  430. her own private key. Anyone can send an encrypted message or verify a signed 
  431. message, using only public keys, but only someone in possession of the correct 
  432. private key can decrypt or sign a message. 
  433.  
  434.  
  435. 2.2 Why use RSA rather than DES?
  436.  
  437. RSA is not an alternative or replacement for DES; rather it supplements
  438. DES (or any other fast bulk encryption cipher) and is used together with DES 
  439. in a secure communications environment. (Note: for an explanation of DES,
  440. see Question 5.1.)
  441.  
  442. RSA allows two important functions not provided by DES: secure key exchange 
  443. without prior exchange of secrets, and digital signatures. For encrypting
  444. messages, RSA and DES are usually combined as follows: first the message is 
  445. encrypted with a random DES key, and then, before being sent over an insecure 
  446. communications channel, the DES key is encrypted with RSA. Together, the 
  447. DES-encrypted message and the RSA-encrypted DES key are sent. This protocol 
  448. is known as an RSA digital envelope.
  449.  
  450. One may wonder, why not just use RSA to encrypt the whole message and not use 
  451. DES at all? Although this may be fine for small messages, DES (or another 
  452. cipher) is preferable for larger messages because it is much faster than RSA
  453. (see Question 2.3).
  454.  
  455. In some situations, RSA is not necessary and DES alone is sufficient. This 
  456. includes multi-user environments where secure DES-key agreement can take 
  457. place, for example by the two parties meeting in private. Also, RSA is 
  458. usually not necessary in a single-user environment; for example, if you want 
  459. to keep your personal files encrypted, just do so with DES using, say, your 
  460. personal password as the DES key. RSA, and public-key cryptography in general,
  461. is best suited for a multi-user environment. Also, any system in which digital
  462. signatures are desired needs RSA or some other public-key system.
  463.  
  464.  
  465. 2.3 How fast is RSA?
  466.  
  467. An ``RSA operation,'' whether for encrypting or decrypting, signing
  468. or verifying, is essentially a modular exponentiation, which can be 
  469. performed by a series of modular multiplications.
  470.  
  471. In practical applications, it is common to choose a small public 
  472. exponent for the public key; in fact, entire groups of users can use 
  473. the same public exponent. This makes encryption faster than decryption 
  474. and verification faster than signing. Algorithmically, public-key 
  475. operations take O(k^2) steps, private key operations take O(k^3) 
  476. steps, and key generation takes O(k^4) steps, where k is the number of 
  477. bits in the modulus; O-notation refers to the an upper bound on the 
  478. asymptotic running time of an algorithm [22].
  479.  
  480. There are many commercially available hardware implementations of RSA, 
  481. and there are frequent announcements of newer and faster chips. The 
  482. fastest current RSA chip [76] has a throughput greater than 600 Kbits 
  483. per second with a 512-bit modulus, implying that it performs over 1000 
  484. RSA private-key operations per second. It is expected that RSA speeds 
  485. will reach 1 Mbit/second within a year or so.
  486.  
  487. By comparison, DES is much faster than RSA. In software, DES is generally at 
  488. least 100 times as fast as RSA. In hardware, DES is between 1,000 and 10,000
  489. times as fast, depending on the implementations. RSA will probably narrow 
  490. the gap a bit in coming years, as it finds growing commercial markets, but 
  491. will never match the performance of DES.
  492.  
  493.  
  494. 2.4 How much extra message length is caused by using RSA?
  495.  
  496. Only a very small amount of data expansion is involved when using RSA. For 
  497. encryption, a message may be padded to a length that is a multiple of the 
  498. block length, usually 64 bits, since RSA is usually combined with a 
  499. secret-key block cipher such as DES (see Question 2.12). Encrypting 
  500. the DES key takes as many additional bits as the size of the RSA modulus.
  501.  
  502.  
  503. For authentication, an RSA digital signature is appended to a document.
  504. An RSA signature, including information such as the name of the signer, is 
  505. typically a few hundred bytes long. One or more certificates (see Question 
  506. 3.5) may be included as well; certificates can be used in conjunction
  507. with any digital signature method. A typical RSA certificate is a few 
  508. hundred bytes long.
  509.  
  510.  
  511. 2.5 What would it take to break RSA?
  512.  
  513. There are a few possible interpretations of ``breaking RSA''. The most 
  514. damaging would be for an attacker to discover the private key corresponding 
  515. to a given public key; this would enable the attacker both to read all 
  516. messages encrypted with the public key and to forge signatures. The obvious 
  517. way to do this attack is to factor the public modulus, n, into its two prime
  518. factors, p and q. From p, q, and e, the public exponent, the attacker can 
  519. easily get d, the private key. The hard part is factoring n; the security 
  520. of RSA depends of factoring being difficult. In fact, the task of recovering
  521. the private key is equivalent to the task of factoring the modulus: you can 
  522. use d to factor n, as well as use the factorization of n to find d. See 
  523. Questions 4.5 and 4.6 regarding the state of the art in factoring. It should
  524. be noted that hardware improvements alone will not weaken RSA, as long as
  525. appropriate key lengths are used; in fact, hardware improvements should 
  526. increase the security of RSA (see Question 4.5).
  527.  
  528. Another way to break RSA is to find a technique to compute e-th roots mod 
  529. n. Since c = m^e, the e-th root of c is the message m. This attack would 
  530. allow someone to recover encrypted messages and forge signatures even 
  531. without knowing the private key. This attack is not known to be equivalent to 
  532. factoring. No methods are currently known that attempt to break RSA in this 
  533. way. 
  534.  
  535. The attacks just mentioned are the only ways to break RSA in such a 
  536. way as to be able to recover all messages encrypted under a given key. 
  537. There are other methods, however, which aim to recover single messages;
  538. success would not enable the attacker to recover other messages 
  539. encrypted with the same key. 
  540.  
  541. The simplest single-message attack is the guessed plaintext attack. An 
  542. attacker sees a ciphertext, guesses that the message might be ``Attack at 
  543. dawn'', and encrypts this guess with the public key of the recipient; by 
  544. comparison with the actual ciphertext, the attacker knows whether or not 
  545. the guess was correct. This attack can be thwarted by appending some random 
  546. bits to the message. Another single-message attack can occur if someone 
  547. sends the same message m to three others, who each have public exponent 
  548. e=3. An attacker who knows this and sees the three messages will be able 
  549. to recover the message m; this attack and ways to prevent it are discussed 
  550. by Hastad [35]. There are also some ``chosen ciphertext'' attacks, in 
  551. which the attacker creates some ciphertext and gets to see the corresponding 
  552. plaintext, perhaps by tricking a legitimate user into decrypting a fake 
  553. message; Davida [23] gives some examples.
  554.  
  555. Of course, there are also attacks that aim not at RSA itself but at
  556. a given insecure implementation of RSA; these do not count as ``breaking
  557. RSA'' because it is not any weakness in the RSA algorithm that is exploited,
  558. but rather a weakness in a specific implementation. For example, if someone 
  559. stores his private key insecurely, an attacker may discover it. One cannot 
  560. emphasize strongly enough that to be truly secure RSA requires a secure 
  561. implementation; mathematical security measures, such as choosing a long key 
  562. size, are not enough. In practice, most successful attacks will likely be 
  563. aimed at insecure implementations and at the key management stages of an RSA 
  564. system. See Section 3 for discussion of secure key management in an 
  565. RSA system.
  566.  
  567.  
  568. 2.6 Are strong primes necessary in RSA?
  569.  
  570. In the literature pertaining to RSA, it has often been suggested that in 
  571. choosing a key pair, one should use ``strong'' primes p and q to generate 
  572. the modulus n. Strong primes are those with certain properties that make 
  573. the product n hard to factor by specific factoring methods; such 
  574. properties have included, for example, the existence of a large prime 
  575. factor of p-1 and a large prime factor of p+1. The reason for these 
  576. concerns is that some factoring methods are especially suited to 
  577. primes p such that p-1 or p+1 has only small factors; strong primes
  578. are resistant to these attacks. 
  579.  
  580. However, recent advances in factoring (see Question 4.6) appear to 
  581. have obviated the advantage of strong primes; the elliptic curve factoring 
  582. algorithm is one such advance. The new factoring methods have as good a 
  583. chance of success on strong primes as on ``weak'' primes; therefore, choosing 
  584. strong primes does not significantly increase resistance to attacks. So for 
  585. now the answer is negative: strong primes are not necessary when using RSA, 
  586. although there is no danger in using them, except that it takes longer to 
  587. generate a key pair. However, new factoring algorithms may be developed in 
  588. the future which once again target primes with certain properties; if so, 
  589. choosing strong primes may again help to increase security. 
  590.  
  591.  
  592. 2.7 How large a modulus (key) should be used in RSA?
  593.  
  594. The best size for an RSA modulus depends on one's security needs. The larger 
  595. the modulus, the greater the security but also the slower the RSA operations. 
  596. One should choose a modulus length upon consideration, first, of one's 
  597. security needs, such as the value of the protected data and how long it needs 
  598. to be protected, and, second, of how powerful one's potential enemy is. 
  599. It is also possible that a larger key size will allow a digitally signed
  600. document to be valid for a longer time; see Question 3.17.
  601.  
  602. A good analysis of the security obtained by a given modulus length is given 
  603. by Rivest [72], in the context of discrete logarithms modulo a prime, but 
  604. it applies to RSA as well. Rivest's estimates imply that a 512-bit modulus 
  605. can be factored with an $8.2 million effort, less in the future. It may 
  606. therefore be advisable to use a longer modulus, perhaps 768 bits in length. 
  607. Those with extremely valuable data (or large potential damage from digital 
  608. forgery) may want to use a still longer modulus. A certifying authority 
  609. (see Question 3.5) might use a modulus of length 1000 bits or more, because 
  610. the validity of so many other key pairs depends on the security of the one 
  611. central key. 
  612.  
  613. The key of an individual user will expire after a certain time, say, two 
  614. years (see Question 3.12). Upon expiration, the user will generate a new 
  615. key which should be at least a few digits longer than the old key to 
  616. reflect the speed increases of computers over the two years. Recommended key 
  617. length schedules will probably be published by some authority or public body. 
  618.  
  619. Users should keep in mind that the estimated times to break RSA are averages 
  620. only. A large factoring effort, attacking many thousands of RSA moduli, may 
  621. succeed in factoring at least one in a reasonable time. Although the security 
  622. of any individual key is still strong, with some factoring methods there is 
  623. always a small chance that the attacker may get lucky and factor it quickly.
  624.  
  625. As for the slowdown caused by increasing the key size (see Question 
  626. 2.3), doubling the modulus length would, on average, increase the 
  627. time required for public-key operations (encryption and signature 
  628. verification) by a factor of 4, and increase the time taken by private 
  629. key operations (decryption and signing) by a factor of 8. The reason that
  630. public-key operations are affected less than private-key operations is that
  631. the public exponent can remain fixed when the modulus is increased, whereas
  632. the private exponent increases proportionally. Key generation time would 
  633. increase by a factor of 16 upon doubling the modulus, but this is a 
  634. relatively infrequent operation for most users.
  635.  
  636.  
  637. 2.8 How large should the primes be?
  638.  
  639. The two primes, p and q, which compose the modulus, should be of
  640. roughly equal length; this will make the modulus harder to factor than
  641. if one of the primes was very small. Thus if one chooses to use a 512-bit 
  642. modulus, the primes should each have length approximately 256 bits.
  643.  
  644.  
  645. 2.9 How does one find random numbers for keys?
  646.  
  647. One needs a source of random numbers in order to find two random primes
  648. to compose the modulus. If one used a predictable method of generating
  649. the primes, an adversary could mount an attack by trying to recreate the
  650. key generation process. 
  651.  
  652. Random numbers obtained from a physical process are in principle the best.
  653. One could use a hardware device, such as a diode; some are sold commercially 
  654. on computer add-in boards for this purpose. Another idea is to use physical 
  655. movements of the computer user, such as keystroke timings measured in
  656. microseconds. By whichever method, the random numbers may still contain
  657. some correlations preventing sufficient statistical randomness. Therefore,
  658. it is best to run them through a good hash function (see Question 8.2) 
  659. before actually using them. 
  660.  
  661. Another approach is to use a pseudorandom number generator fed by a random
  662. seed. Since these are deterministic algorithms, it is important to find
  663. one that is very unpredictable and also to use a truly random seed. There is
  664. a wide literature on the subject of pseudorandom number generators. See
  665. Knuth [41] for an introduction.
  666.  
  667. Note that one does not need random numbers to determine the public and
  668. private exponents in RSA, after choosing the modulus. One can simply
  669. choose an arbitrary value for the public exponent, which then determines
  670. the private exponent, or vice versa.
  671.  
  672.  
  673. 2.10 What if users of RSA run out of distinct primes?
  674.  
  675. There are enough prime numbers that RSA users will never run out of them.
  676. For example, the number of primes of length 512 bits or less exceeds
  677. 10^{150}, according to the prime number theorem; this is more than the 
  678. number of atoms in the known universe.
  679.  
  680.  
  681. 2.11 How do you know if a number is prime?
  682.  
  683. It is generally recommended to use probabilistic primality testing, which
  684. is much quicker than actually proving a number prime. One can use a 
  685. probabilistic test that decides if a number is prime with probability of 
  686. error less than 2^{-100}. For further discussion of some primality testing 
  687. algorithms, see the papers in the bibliography of [5]. For some empirical 
  688. results on the reliability of simple primality tests see Rivest [70]; one 
  689. can perform very fast primality tests and be extremely confident in the 
  690. results. A simple algorithm for choosing probable primes was recently 
  691. analyzed by Brandt and Damgard [9].
  692.  
  693.  
  694. 2.12 How is RSA used for encryption in practice?
  695.  
  696. RSA is combined with a secret-key cryptosystem, such as DES, to encrypt
  697. a message by means of an RSA digital envelope. 
  698.  
  699. Suppose Alice wishes to send an encrypted message to Bob. She first 
  700. encrypts the message with DES, using a randomly chosen DES key. Then 
  701. she looks up Bob's public key and uses it to encrypt the DES key. The 
  702. DES-encrypted message and the RSA-encrypted DES key together form the RSA 
  703. digital envelope and are sent to Bob. Upon receiving the digital envelope, 
  704. Bob decrypts the DES key with his private key, then uses the DES key 
  705. to decrypt to message itself.
  706.  
  707.  
  708. 2.13 How is RSA used for authentication in practice?
  709.  
  710. Suppose Alice wishes to send a signed message to Bob. She uses a hash
  711. function on the message (see Question 8.2) to create a message digest, 
  712. which serves as a ``digital fingerprint'' of the message. She then 
  713. encrypts the message digest with her RSA private key; this is the digital 
  714. signature, which she sends to Bob along with the message itself. Bob, 
  715. upon receiving the message and signature, decrypts the signature with
  716. Alice's public key to recover the message digest. He then hashes the 
  717. message with the same hash function Alice used and compares the result
  718. to the message digest decrypted from the signature. If they are exactly
  719. equal, the signature has been successfully verified and he can be confident
  720. that the message did indeed come from Alice. If, however, they are not 
  721. equal, then the message either originated elsewhere or was altered after
  722. it was signed, and he rejects the message. Note that for authentication, 
  723. the roles of the public and private keys are converse to their roles in 
  724. encryption, where the public key is used to encrypt and the private key 
  725. to decrypt.
  726.  
  727. In practice, the public exponent is usually much smaller than the 
  728. private exponent; this means that the verification of a signature is faster 
  729. than the signing. This is desirable because a message or document will 
  730. only be signed by an individual once, but the signature may be verified 
  731. many times.
  732.  
  733. It must be infeasible for anyone to either find a message that hashes to 
  734. a given value or to find two messages that hash to the same value. If either 
  735. were feasible, an intruder could attach a false message onto Alice's 
  736. signature. Hash functions such as MD4 and MD5 (see Question 8.3) have been 
  737. designed specifically to have the property that finding a match is 
  738. infeasible, and are therefore considered suitable for use in cryptography.
  739.  
  740. One or more certificates (see Question 3.5) may accompany a digital 
  741. signature. A certificate is a signed document attesting to the identity and 
  742. public key of the person signing the message. Its purpose is to prevent
  743. someone from impersonating someone else, using a phony key pair. If a 
  744. certificate is present, the recipient (or a third party) can check the 
  745. authenticity of the public key, assuming the certifier's public key is
  746. itself trusted. 
  747.  
  748.  
  749. 2.14 Does RSA help detect altered documents and transmission errors?
  750.  
  751. An RSA digital signature is superior to a handwritten signature in that
  752. it attests to the contents of a message as well as to the identity of
  753. the signer. As long as a secure hash function (see Question 8.2) is used, 
  754. there is no way to take someone's signature from one document and attach 
  755. it to another, or to alter the signed message in any way. The slightest 
  756. change in a signed document will cause the digital signature verification
  757. process to fail. Thus, RSA authentication allows people to check the
  758. integrity of signed documents. Of course, if a signature verification
  759. fails, it may be unclear whether there was an attempted forgery or 
  760. simply a transmission error.
  761.  
  762.  
  763. 2.15 What are alternatives to RSA?
  764.  
  765. Many other public-key cryptosystems have been proposed, as a look through
  766. the proceedings of the annual Crypto and Eurocrypt conferences quickly 
  767. reveals. A mathematical problem called the knapsack problem was the basis 
  768. for several systems [52], but these have lost favor because several 
  769. versions were broken. Another system, designed by ElGamal [30], is based 
  770. on the discrete logarithm problem. The ElGamal system was, in part, the 
  771. basis for several later signature methods, including one by Schnorr [75], 
  772. which in turn was the basis for DSS, the digital signature standard 
  773. proposed by NIST (see Question 6.8). Because of the NIST proposal, the 
  774. relative merits of these signature systems versus RSA signatures has 
  775. received a lot of attention; see [57] for a discussion. The ElGamal system 
  776. has been used successfully in applications; it is slower for encryption 
  777. and verification than RSA and its signatures are larger than RSA signatures.
  778.  
  779. In 1976, before RSA, Diffie and Hellman [29] proposed a system for key 
  780. exchange only; it permits secure exchange of keys in an otherwise 
  781. conventional secret-key system. This system is in use today.
  782.  
  783. Cryptosystems based on mathematical operations on elliptic curves have 
  784. also been proposed [43,56], as have cryptosystems based on discrete 
  785. exponentiation in the finite field GF(2^n). The latter are very fast in 
  786. hardware; however, doubts have been raised about their security because 
  787. the underlying problem may be easier to solve than factoring [64,34]. 
  788. There are also some probabilistic encryption methods [8,32], which have 
  789. the attraction of being resistant to a guessed ciphertext attack (see 
  790. Question 2.5), but at a cost of data expansion. In probabilistic 
  791. encryption, the same plaintext encrypted twice under the same key will 
  792. give, with high probability, two different ciphertexts.
  793.  
  794. For digital signatures, Rabin [68] proposed a system which is provably 
  795. equivalent to factoring; this is an advantage over RSA, where one may 
  796. still have a lingering worry about an attack unrelated to factoring.
  797. Rabin's method is susceptible to a chosen message attack, however, in which 
  798. the attacker tricks the user into signing messages of a special form. Another 
  799. signature scheme, by Fiat and Shamir [31], is based on interactive 
  800. zero-knowledge protocols, but can be adapted for signatures. It is faster 
  801. than RSA and is provably equivalent to factoring, but the signatures are 
  802. much larger than RSA signatures. Other variations, however, lessen the 
  803. necessary signature length; see [17] for references. A system is 
  804. ``equivalent to factoring'' if recovering the private key is provably as 
  805. hard as factoring; forgery may be easier than factoring in some of the 
  806. systems.
  807.  
  808. Advantages of RSA over other public-key cryptosystems include the fact that 
  809. it can be used for both encryption and authentication, and that it has been 
  810. around for many years and has successfully withstood much scrutiny. RSA has 
  811. received far more attention, study, and actual use than any other public-key 
  812. cryptosystem, and thus RSA has more empirical evidence of its security than 
  813. more recent and less scrutinized systems. In fact, a large number of 
  814. public-key cryptosystems which at first appeared secure were later broken; 
  815. see [13] for some case histories. 
  816.  
  817.  
  818. 2.16 Is RSA currently in use today?
  819.  
  820. The use of RSA is undergoing a period of rapid expansion and may become 
  821. ubiquitous within a few years. It is currently used in a wide variety of 
  822. products, platforms and industries around the world. It is found in many 
  823. commercial software products and planned for many more. RSA is built into 
  824. current or planned operating systems by Microsoft, Apple, Sun, and Novell. 
  825. In hardware, RSA can be found in secure telephones, on Ethernet network 
  826. cards, and on smart cards. RSA is also used internally in many institutions, 
  827. including branches of the U.S. government, major corporations, national 
  828. laboratories, and universities.
  829.  
  830. Adoption of RSA seems to be proceeding more quickly for authentication 
  831. (digital signatures) than for privacy (encryption), perhaps in part because 
  832. products for authentication are easier to export than those for privacy (see 
  833. Question 1.6). 
  834.  
  835.  
  836. 2.17 Is RSA an official standard today?
  837.  
  838. RSA is part of many official standards worldwide. The ISO (International
  839. Standards Organization) 9796 standard lists RSA as a compatible 
  840. cryptographic algorithm, as does the Consultative Committee in International 
  841. Telegraphy and Telephony (CCITT) X.509 security standard. RSA is part of 
  842. the Society for Worldwide Interbank Financial Telecommunications (SWIFT) 
  843. standard, the French financial industry's ETEBAC 5 standard, and the ANSI 
  844. X9.31 draft standard for the U.S. banking industry. The Australian key 
  845. management standard, AS2805.6.5.3, also specifies RSA.
  846.  
  847. RSA is found in Internet's proposed PEM (Privacy Enhanced Mail) standard
  848. (see Question 8.7) and the PKCS standard for the software industry 
  849. (see Question 8.9). The OSI Implementors' Workshop (OIW) has issued 
  850. implementers' agreements referring to PKCS and PEM, which each include RSA. 
  851.  
  852. A number of other standards are currently being developed and will 
  853. be announced over the next couple of years; many are expected to include 
  854. RSA as either an endorsed or a recommended system for privacy and/or 
  855. authentication. See [38] for a more comprehensive survey of cryptography 
  856. standards.
  857.  
  858.  
  859. 2.18 Is RSA a de facto standard? Why is a de facto standard important?
  860.  
  861. RSA is the most widely used public-key cryptosystem today and has often
  862. been called a de facto standard. Regardless of the official standards, the 
  863. existence of a de facto standard is extremely important for the development 
  864. of a digital economy. If one public-key system is used everywhere for 
  865. authentication, then signed digital documents can be exchanged between users 
  866. in different nations using different software on different platforms; this
  867. interoperability is necessary for a true digital economy to develop.
  868.  
  869. The lack of secure authentication has been a major obstacle in achieving
  870. the promise that computers would replace paper; paper is still necessary
  871. almost everywhere for contracts, checks, official letters, legal documents,
  872. and identification. With this core of necessary paper transaction, it has not 
  873. been feasible to evolve completely into a society based on electronic 
  874. transactions. Digital signatures are the exact tool necessary to convert 
  875. the most essential paper-based documents to digital electronic media. 
  876. Digital signatures makes it possible, for example, to have leases, wills, 
  877. passports, college transcripts, checks, and voter registration forms that 
  878. exist only in electronic form; any paper version would just be a ``copy'' 
  879. of the electronic original. All of this is enabled by an accepted standard 
  880. for digital signatures.
  881.  
  882. 2.19 Is RSA patented? 
  883.  
  884. RSA is patented under U.S. Patent 4,405,829, issued 9/20/83 and held by
  885. Public Key Partners (PKP), of Sunnyvale, California; the patent expires 17 
  886. years after issue, in 2000. RSA is usually licensed together with other 
  887. public-key cryptography patents (see Question 1.5). PKP has a standard, 
  888. royalty-based licensing policy which can be modified for special 
  889. circumstances. If a software vendor, having licensed the public-key patents, 
  890. incorporates RSA into a commercial product, then anyone who purchases the 
  891. end product has the legal right to use RSA within the context of that 
  892. software. The U.S. government can use RSA without a license because it was 
  893. invented at MIT with partial government funding. RSA is not patented outside 
  894. North America.
  895.  
  896. In North America, a license is needed to ``make, use or sell'' RSA. However,
  897. PKP usually allows free non-commercial use of RSA, with written permission, 
  898. for personal, academic or intellectual reasons. Furthermore, RSA 
  899. Laboratories has made available (in the U.S. and Canada) at no charge a 
  900. collection of cryptographic routines in source code, including the RSA 
  901. algorithm; it can be used, improved and redistributed non-commercially 
  902. (see Question 8.10).
  903.  
  904.  
  905. 2.20 Can RSA be exported from the U.S.?
  906.  
  907. Export of RSA falls under the same U.S. laws as all other cryptographic
  908. products. See Question 1.6 for details.
  909.  
  910. RSA used for authentication is more easily exported than when used for
  911. privacy. In the former case, export is allowed regardless of key (modulus)
  912. size, although the exporter must demonstrate that the product cannot be
  913. easily converted to use for encryption. In the case of RSA used for 
  914. privacy (encryption), the U.S. government generally does not allow
  915. export if the key size exceeds 512 bits. Export policy is currently a
  916. subject of debate, and the export status of RSA may well change in the
  917. next year or two.
  918.  
  919. Regardless of U.S. export policy, RSA is available abroad in non-U.S.
  920. products.
  921.  
  922.  
  923.  
  924.        --------------------------------------------
  925.  
  926. RSA Laboratories is the research and consultation division of RSA Data
  927. Security, Inc., the company founded by the inventors of the RSA
  928. public-key cryptosystem. RSA Laboratories reviews, designs and
  929. implements secure and efficient cryptosystems of all kinds. Its
  930. clients include government agencies, telecommunications companies,
  931. computer manufacturers, software developers, cable TV broadcasters,
  932. interactive video manufacturers, and satellite broadcast companies,
  933. among others.
  934.  
  935. For more information about RSA Laboratories, call or write to 
  936.                         RSA Laboratories
  937.                         100 Marine Parkway
  938.                         Redwood City, CA 94065
  939.                         (415) 595-7703
  940.                         (415) 595-4126 (fax)
  941.  
  942.  
  943.  
  944. PKCS, RSAREF and RSA Laboratories are trademarks of RSA Data
  945. Security, Inc. All other trademarks belong to their respective 
  946. companies.
  947.  
  948. This document is available in ASCII, Postscript, and Latex formats
  949. via anonymous FTP to rsa.com:/pub/faq.
  950.  
  951. Please send comments and corrections to faq-editor@rsa.com.
  952.  
  953.  
  954.  
  955. ===
  956. DISTRIBUTION: How to obtain this document
  957.  
  958. This document has been brought to you in part by CRAM, involved in the
  959. redistribution of valuable information to a wider USENET audience (see
  960. below). The most recent version of this document can be obtained via
  961. the author's instructions above. The following directions apply to 
  962. retrieve the possibly less-current USENET FAQ version.
  963.  
  964.   FTP
  965.   ---
  966.     This FAQ is available from the standard FAQ server rtfm.mit.edu via
  967.     FTP in the directory /pub/usenet/news.answers/cryptography-faq/rsa/
  968.  
  969.   Email
  970.   -----
  971.     Email requests for FAQs go to mail-server@rtfm.mit.edu with commands
  972.     on lines in the message body, e.g. `help' and `index'.
  973.  
  974.   Usenet
  975.   ------
  976.     This FAQ is posted every 21 days to the groups
  977.  
  978.       sci.crypt
  979.       talk.politics.crypto
  980.       alt.security.ripem
  981.       sci.answers
  982.       talk.answers
  983.       alt.answers
  984.       news.answers
  985.  
  986. _ _, _ ___ _, __,  _, _  _, ___ _  _, _, _ _  _, __,  _, _  _ ___ __,
  987. | |\ | |_ / \ |_)  |\/| / \  |  | / \ |\ | | (_  |_) / \ |  | |_  | )
  988. | | \| |  \ / | \  |  | |~|  |  | \ / | \| | , ) |   \ / |/\| |   |~\
  989. ~ ~  ~ ~   ~  ~  ~ ~  ~ ~ ~  ~  ~  ~  ~  ~ ~  ~  ~    ~  ~  ~ ~~~ ~  ~
  990.  
  991. ===
  992. CRAM: The Cyberspatial Reality Advancement Movement
  993.  
  994. In an effort to bring valuable information to the masses, and as a
  995. service to motivated information compilers, a member of CRAM can help
  996. others unfamiliar with Usenet `publish' their documents for
  997. widespread dissemination via the FAQ structure, and act as a
  998. `sponsor' knowledgable in the submissions process. This document is
  999. being distributed under this arrangement.
  1000.  
  1001. We have found these compilations tend to appear on various mailing
  1002. lists and are valuable enough to deserve wider distribution. If you
  1003. know of an existing compilation of Internet information that is not
  1004. currently a FAQ, please contact us and we may `sponsor' it. The
  1005. benefits to the author include:
  1006.  
  1007. - use of the existing FAQ infrastructure for distribution:
  1008.   - automated mail server service
  1009.   - FTP archival
  1010.   - automated posting
  1011.  
  1012. - a far wider audience that can improve the quality, accuracy, and 
  1013.   coverage of the document enormously through email feedback
  1014.  
  1015. - potential professional inquiries for the use of your document in 
  1016.   other settings, such as newsletters, books, etc.
  1017.  
  1018. - with us as your sponsor, we will also take care of the 
  1019.   technicalities in the proper format of the posted version and 
  1020.   updating procedures, leaving you free of the `overhead' to focus on 
  1021.   the basic updates alone
  1022.  
  1023. The choice of who we `sponsor' is entirely arbitrary. You always have
  1024. the option of handling the submission process yourself.  See the FAQ
  1025. submission guidelines FAQ in news.answers. 
  1026.  
  1027. For information, send mail to <tmp@netcom.com>.
  1028.  
  1029.  \   \   \   \   \   \   \   \   \   |   /   /   /   /   /   /   /   /   /   /
  1030.           _______       ________          _____        _____  _____
  1031.          ///   \\\      |||   \\\        /// \\\       |||\\\///|||
  1032.         |||     ~~      |||   ///       |||   |||      ||| \\// |||
  1033.         |||     __      |||~~~\\\       |||~~~|||      |||  ~~  |||
  1034.          \\\   ///      |||    \\\      |||   |||      |||      |||
  1035.           ~~~~~~~       ~~~     ~~~     ~~~   ~~~      ~~~      ~~~
  1036.  /   /   /   /   /   /   /   /   /   |   \   \   \   \   \   \   \   \   \   \
  1037.  
  1038. C y b e r s p a t i a l  R e a l i t y  A d v a n c e m e n t  M o v e m e n t
  1039.  
  1040. * CIVILIZING CYBERSPACE: send `info cypherwonks' to majordomo@lists.eunet.fi *
  1041.  
  1042.